Thursday, 27 October 2011

Next-generation sequencing to identifies novel microRNAs associated with cancer conditions.

Novel microRNAs in peripheral blood of lung cancer patients:
MicroRNAs (miRNAs) are increasingly envisaged as biomarkers for various tumor and non-tumor diseases. MiRNA biomarker identification is, as of now, mostly performed in a candidate approach, limiting discovery to annotated miRNAs and ignoring unknown ones with potential diagnostic value. Scientists at Biomarker Discovery Center Heidelberg, Germany, applied high-throughput SOLiD transcriptome sequencing of miRNAs expressed in human peripheral blood of patients with lung cancer. They developed a bioinformatics pipeline to generate profiles of miRNA markers and to detect novel miRNAs with diagnostic information. Applying this approach, they detected 76 previously unknown miRNAs and 41 novel mature forms of known precursors. In addition, they identified 32 annotated and seven unknown miRNAs that were significantly altered in cancer patients. These results demonstrate that deep sequencing of small RNAs bears high potential to quantify miRNAs in peripheral blood and to identify previously unknown miRNAs serving as biomarker for lung cancer

MicroRNAs Associated with Metastatic Prostate Cancer
Metastasis is the most common cause of death of prostate cancer patients. Identification of specific metastasis biomarkers and novel therapeutic targets is considered essential for improved prognosis and management of the disease. MicroRNAs (miRNAs) form a class of non-coding small RNA molecules considered to be key regulators of gene expression. Their dysregulation has been shown to play a role in cancer onset, progression and metastasis, and miRNAs represent a promising new class of cancer biomarkers. The objective of this study was to identify down- and up-regulated miRNAs in prostate cancer that could provide potential biomarkers and/or therapeutic targets for prostate cancer metastasis.
Next generation sequencing technology was applied to identify differentially expressed miRNAs in a transplantable metastatic versus a non-metastatic prostate cancer xenograft line, both derived from one patient's primary cancer. The xenografts were developed via subrenal capsule grafting of cancer tissue into NOD/SCID mice, a methodology that tends to preserve properties of the original cancers (e.g., tumor heterogeneity, genetic profiles).Differentially expressed known miRNAs, isomiRs and 36 novel miRNAs were identified. A number of these miRNAs (21/104) have previously been reported to show similar down- or up-regulation in prostate cancers relative to normal prostate tissue, and some of them (e.g., miR-16, miR-34a, miR-126*, miR-145, miR-205) have been linked to prostate cancer metastasis, supporting the validity of the analytical approach.PLoS One. 2011;6(9):e24950. Epub 2011 Sep 30.

 Next-generation sequencing of microRNAs for breast cancer detection.

 

It is reported that different microRNA (miRNA) profiles can be detected in the blood of cancer patients. We investigated that whether the key serum miRNAs could discriminate patients with and without breast cancer. This study was divided into three parts: (1) miRNA marker discovery using SOLiD sequencing-based miRNA profiling on cancerous and adjacent noncancerous breast tissue of one breast cancer patient; (2) marker selection and validation by real-time PCR on a small set of serum; (3) gene ontology analysis of the key miRNA target genes. Of genome-wide tissue miRNA expression analysis, five miRNAs were found to be altered more than fivefold by SOLiD sequencing (i.e., miR-29a, miR-23a, miR-23b, miR-192, and miR-21). All the five miRNAs were validated on the 20 breast cancer patients and 20 controls. miR-29a and miR-21 were significantly increased in the serum of breast cancer patients (P < .05). Gene ontology analysis of the target genes revealed enrichment for special biological process categories, that is, signal transduction, development, apoptosis, cell proliferation, and cell adhesion. SOLiD sequencing provides a promising method for cancer-related miRNA profiling. Serum miRNAs may be useful biomarkers for breast cancer detection.

No comments:

Post a Comment

microRNA sequencing

microRNA sequencing MicroRNA initially discovered in C. elegans , are newly identified class of non-protein-coding small (~20nt) R...